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Motivation

« Emergency situations (e.g. runway incursion,
airframe damage, etc.) may warrant unconventional
usage of aircraft engines

* Previous work:
— Increased maximum thrust output (overthrust)
— Enhanced dynamic thrust response
— Enhanced engine performance and failure risk
— RIisk assessment: vehicle & engine risk balancing

Litt et al., “A Risk Assessment Architecture for Enhanced Engine Operation,” AIAA Infotech@Aerospace Conference, 2010.
Csank et al., “Implementation of Enhanced Propulsion Control Modes for Emergency Flight Operation,” AIAA
Infotech@Aerospace Conference, 2011.

McGlynn et al., “A Risk Management Architecture for Emergency Integrated Aircraft Control,” AIAA Infotech@Aerospace
Conference, 2011.

Csank et al., “The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine,” 47t
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2011.

May et al., “Improving Engine Responsiveness during Approach through High Speed Idle Control,” 47t
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2011.
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Objective

« Design control modes that provide enhanced
performance based on consistent risk elevation

« Considerations:
— Identify performance parameter(s) to be enhanced

— ldentify and characterize relevant engine failure or
malfunction mode(s)

— Designate allowable elevated probability of failure (i.e.
vehicle/engine risk tradeoff)
* Develop performance-enhancing control logic

« Demonstrate on previously introduced concepts of
overthrust and faster response using computer
simulation of commercial-type turbofan engine
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Simulation: C-MAPSS40k
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« Commercial Modular Aero-Propulsion System Simulation 40k
e 40,000-Ib thrust class, high-bypass, dual-spool turbofan engine
« Component performance maps

« Zero-dimensional, spool dynamics

 NASA Software Catalog (https://sr.grc.nasa.gov/)
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Simulation: Control System
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« Throttle command (PLA) provides setpoint for gain-

scheduled PI feedback control on engine pressure
ratio (EPR)

« Max/min regulators for limit protection
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Overthrust: Design Considerations

* Increase engine thrust output beyond design
maximum levels

 Risk: failure of disk or blade with contained debris

 FAA regulation on allowable rate of occurrence for
contained failure types: 10" to 10~ per flight hour
(Aeronautics and Space, 14 C.F.R. pt. 33.75)

* Allowable elevated risk level for enhanced
performance: 103 per flight hour
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Overthrust: Risk Function

» Calculates risk of disk and blade
failure as function of operating
conditions

Fan speed (Nf)

Core speed (Nc)

HPT inlet temperature (T40)
HPT exit temperature (T48)
LPT exit temperature (T50)

» Tested at 1,251 operating points
across operating envelope

Maximum power setting

Altitude 0O to 40,000 feet

Mach number 0 to 0.8

Standard ambient temperature to
+40°R

New to fully deteriorated engine

Litt et al., “A Risk Assessment Architecture for Enhanced Engine Operation,”

AIAA Infotech@Aerospace Conference, 2010.
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Overthrust: Implementation

« Reduced-order risk function HE
used for control design and 2 o
implementation (NOT used £
when evaluating results) B 1E0
- Disk failure risk as function of I —
core speed 3 | . | | |
e Blade failure risk as function of l.E-0612200 12¢:100 12:600 122:300 13c:)oo 13;00
core speed and single turbine Core Speed, RPM
temperature ::Z :
« Allowable elevated risk (10-3) 1700 -
manifested as: w 1050
— Core speed limit for disk failure 2 Ezz :
— Speed-temperature boundary 1500 -
for blade failure 1450 -
1400

8000 9000 10000 11000 12000 13000 14000 15000
Core Speed, RPM

WWW.Nnasa.gov 1o



National Aeronautics and Space Administration

Overthrust: Implementation
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» Core speed and turbine temperature regulators used to

maintain engine operating point on risk boundary

* Overthrust activation: PLA mapping switches from idle-

to-max to idle-to-overthrust
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Net Thrust Change, %
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Overthrust: Results

Tested at 180 operating points (0 to

4000 feet, Mach 0 to 0.3, standard to

+40°R ambient temp, new to full
deterioration)

Maximum power setting: baseline vs.

overthrust

Nc-T48 reduced-order risk boundary

(LPT inlet temperature)
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Faster Response: Design Considerations

* Reduce time required for idle-to-full power thrust
transients

* Risk: high-pressure compressor stall/surge
* No FAA requirement on probability of stall/surge

* Allowable elevated risk level for enhanced
performance: 103
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Probability Density

Faster Response: Risk Function

Statistical stability assessment (SAE
AIR1419 Rev. A, 1999)

Risk of stall modeled as normal
distribution
Stall margin reported by simulation equals

0.6 ~
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Root-sum-square of random effects equals 3
standard deviations

Stall probability of 10-3 corresponds to
~2.3% stall margin
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Destabilizing Effects Non-random Random
Inlet Distortion 0.7%
PLA Transient 6.0%
Fuel Control Tolerance - +1.15%
Engine-to-Engine Variation - +1.25%
Reynolds Number 0.36%
Inlet Distortion 7.5% -
Engine-to-Engine Variation - +1.35%
14.56% 2.17%

Mean Stall Margin, %
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Faster Response: Implementation
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« Shifting acceleration schedule allows for faster dynamic response with lower

minimum stall margin

« lterative search conducted at 60 operating points (0 to 4000 feet, Mach 0 to 0.2,
standard to +40°R ambient temperature, new to full deterioration) to determine offset

values

« Implementation: 4-D interpolation on operating conditions to determine offset value

= Csank et al., “The Effect of Modified Control Limits on the Performance of a Generic Commercial
Aircraft Engine,” 47t AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2011.

= May et al., “Improving Engine Responsiveness during Approach through High Speed Idle Control,”

47t AIAA/JASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2011.
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Faster Response: Results
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Summary & Future Work

« Enhanced engine performance based on consistent
risk elevation

« Demonstration of implementation on previously
Introduced enhanced performance concepts

« Characterization of engine failure/malfunction risk

* Ongoing & future work:
— Implementation and pilot testing in flight simulator
— Faster response mode with stall margin estimation
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